水素原子のエネルギー準位

水素原子のエネルギー準位

水素原子内の電子の全エネルギー(すなわち、エネルギー準位)は、電子の運動エネルギー E_k と、原子核から受ける静電気力の位置エネルギー E_p の和になります。

E_k = (1/2)mv^2
です。

E_p に関してですが、無限遠を位置エネルギーの基準に取ります。電子に働く静電気力は引力なので、無限遠まで電子を運ぶならば、引力とは逆向きに動かしていかなければなりません、したがって、位置エネルギーの符号は-になるので:

となります。

したがって、電子のエネルギー準位 E は、E = E_k + E_p より:

となります。

ここで、前の記事の運動方程式の両辺にr を掛け、rをr_n としたものを上の式に代入して整理すると:

となります。

そして、前の記事で求めた r_n の式をこれに代入し、E を E_n に直せば、n番目の定常状態の電子のエネルギー準位 E_n は:

となります。


n = 1 のときのエネルギー準位の状態を、水素原子の基底状態(きていじょうたい;ground state)といいます。

n が1以外の整数、すなわち、n = 2, 3, 4, … のときのエネルギー準位の状態を、水素原子の励起状態(れいきじょうたい;excited state)といいます。

nの値が増えるにつれて、電子の軌道は外側に移っていき、エネルギーは大きくなっていきます。


E_1 を具体的に求めると、-13.6 [eV] となります(nが大きくなっていくと、 E_n の値は0に近づいていきます)。

エネルギーが正の状態というのは、電子が原子核から解放されて自由に動き回っている、ということを意味します。すなわちイオン化しています。

したがって、基底状態の水素原子をイオン化するのに必要なエネルギー(イオン化エネルギー(電離エネルギー))は、13.6 [eV] となります。
関連記事

コメントの投稿

非公開コメント

main_line
main_line
プロフィール

batmitzvah

Author:batmitzvah

最新記事
最新コメント
最新トラックバック
月別アーカイブ
カテゴリ
カウンター
検索フォーム
RSSリンクの表示
リンク
QRコード
QR